新闻中心

精准营销的六大步骤

时间:2020-08-18  分享到:

一、用户画像

用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。具体包含以下几个维度:

用户固定特征:性别,年龄,地域,教育水平,生辰八字,职业,星座

用户兴趣特征:兴趣爱好,使用APP,网站,浏览/收藏/评论内容,品牌偏好,产品偏好

用户社会特征:生活习惯,婚恋,社交/信息渠道偏好,宗教信仰,家庭成分

用户消费特征:收入状况,购买力水平,商品种类,购买渠道喜好,购买频次

用户动态特征:当下时间,需求,正在前往的地方,周边的商户,周围人群,新闻事件

如何生成用户精准画像大致分成三步

1.采集和清理数据:用已知预测未知

2.用户分群:分门别类贴标签

3.制定策略:优化再调整

有了用户画像之后,便能清楚了解需求,在实际操作上,能深度经营顾客关系,甚至找到扩散口碑的机会。例如上面例子中,若有生鲜的打折券,日本餐馆最新推荐,营销人员就会把适合产品的相关信息,精准推送这个消费者的手机中;针对不同产品发送推荐信息,同时也不断通过满意度调查,跟踪码确认等方式,掌握顾客各方面的行为与偏好。

除了顾客分群之外,营销人员也在不同时间阶段观察成长率和成功率,前后期对照,确认整体经营策略与方向是否正确;若效果不佳,又该用什么策略去应对。反复试错并调整模型,做到循环优化。

二、数据细分受众

“颠覆营销”书中提到一个例子,可以引述一下,大家思考一个问题:如果你打算搜集200份有效问卷,依照以往的经验,你需要发多少份问卷,才能达到这个目标?预计用多少预算和时间来执行?

以往的方法是这样的:评估网络问卷大约是5%的回收率,想要保证收到200份的问卷,就必须有20倍的发送量,也就是发出4000份问卷,一个月内如果可以回收,就是不错的表现。

但现在不一样了,在执行大数据分析的3小时内,就可以轻松完成以下的目标:

精准挑选出1%的VIP顾客

发送390份问卷,全部回收问卷寄出3小时内回收35%的问卷5天内就回收了超过目标数86%的问卷数所需时间和预算都在以往的10%以下这是怎么做到在问卷发送后的3个小时就回收35%?那是因为数据做到了发送时间的"一对一定制化",利用数据得出,A先生最可能在什么时间打开邮件就在那个时间点发送问卷。

举例来说,有的人在上班路上会打开邮件,但如果是开车族,并没有时间填写答案,而搭乘公共交通工具的人,上班路上的时间会玩手机,填写答案的概率就高,这些都是数据细分受众的好处。

三、预

“预测”能够让你专注于一小群客户,而这群客户却能代表特定产品的大多数潜在买家。

当我们采集和分析用户画像时,可以实现精准营销。这是最直接和最有价值的应用,广告主可以通过用户标签来发布广告给所要触达的用户,这里面又可以通过上图提到的搜索广告,展示社交广告,移动广告等多渠道的营销策略,营销分析,营销优化以及后端CRM/供应链系统打通的一站式营销优化,全面提升ROI。

我们再说一说营销时代的变迁,传统的企业大多还停留在“营销1.0”时代,以产品为中心,满足传统的消费者需求,而进入“营销2.0”,以社会价值与品牌为使命,也不能完全精准对接个性化需求。进入营销3.0的数据时代,我们要对每个消费者进行个性化匹配,一对一营销,甚至精确地算清楚成交转化率,提高投资回报比。

大数据下的营销颠覆经典的营销4P理论:Product(产品),Price(价格),Place(渠道),Promotion(推广),取而代之的是新的营销4P概念:Purpose(意义),Presence(参与),Proximity(接近),Partnership(合作)。在大数据时代,线下地理的竞争边界早就不存在,比的是早一步的先知能力,利用大数据,从顾客真实交易数据中,预测下一次的购买时间。 营销3.0时代关键词就是“预测”。

预测营销能够让你专注于一小群客户,而这群客户却能代表特定产品的大多数潜在买家。过去我们看数据可能是被动的方式,但预测营销强调是决策价值,比如购买时间,你该看的不是她最后的购买日期,而是下次购买的时间,看未来的存活概率,最后生成客户终身价值(CLV)。预测营销催生了一种新的数据驱动营销方式,就是以客户为中心,核心在于帮助公司完成从以产品或渠道为中心到以客户为中心的转变。

四、精准推荐

大数据最大的价值不是事后分析,而是预测和推荐。以电商为例,"精准推荐"成为大数据改变零售业的核心功能。这些顾客提供的身材比例,主观数据,加上销售记录的交叉核对,挖掘每个人专属的服装推荐模型。这种一对一营销是最好的服务。

数据整合改变了企业的营销方式,现在经验已经不是累积在人的身上,而是完全依赖消费者的行为数据去做推荐。未来,销售人员不再只是销售人员,而能以专业的数据预测,搭配人性的亲切互动推荐商品,升级成为顾问型销售。

五、技术工具

关于预测营销的技术能力,有几种选择方案:

1、使用预测分析工作平台,然后以某种方法将模型输入活动管理工具;

2、以分析为动力的预测性活动外包给市场服务提供商;

3、评估并购买一个预测营销的解决方案,比如预测性营销云和多渠道的活动管理工具。

但无论哪条路,都要确定三项基本能力:

1)连接不同来源的客户数据,包括线上,线下,为预测分析准备好数据 ;

2)分析客户数据,使用系统和定制预测模型,做高级分析 ;

3)在正确时间,正确客户,正确的场景出发正确行为,可能做交叉销售,跨不同营销系统。

六、预测模型

预测客户购买可能性的行业标准是RFM模型(最近一次消费R,消费频率F,消费金额M),但模型应用有限,本质是一个试探性方案,没有统计和预测依据。“过去的成绩不能保证未来的表现”,RFM只关注过去,不去将客户当前行为和其他客户当前行为做对比。这样就无法在购买产品之前识别高价值客户。

我们聚焦的预测模型,就是为了在最短时间内对客户价值产生最大影响。这里列举一些其他模型参考:

参与倾向模型,预测客户参与一个品牌的可能性,参与定义可以多元,比如参加一个活动,打开电子邮件,点击,访问某页面。可以通过趋势做预测,是增加还是减少活动。

钱包模型,就是为每个客户预测最大可能的支出,定义为单个客户购买产品的最大年度支出。然后看增长模型,如果当前的总目标市场比较小,但未来可能很大,就需要去发现这些市场。

价格优化模型,就是能够去最大限度提升销售,销量或利润的架构,通过价格优化模型为每个客户来定价,这里需要对你想要的产品开发不同的模型,或者开发通用,可预测的客户价格敏感度的模型,确定哪一块报价时对客户有最大的影响。

1562.jpg

深圳兆信物联网技术有限公司有着从业20年的防伪经验,服务过多家知名企业,具有专利性的技术,对于防伪防窜货有丰富的经验,可以提供多种个性化的防伪、防窜货、溯源、微信抽奖、积分商城等方案,如有需要或希望得到进一步了解,可致电免费热线电话:0755-8883 0778,将有专人为您提供详细的咨询和服务。


上一页:浮雕防伪标签技术简介 下一页:二维码追溯系统解决方案
TOP↑

王先生

胡小姐

客户服务热线

0755-88830778